
©Charles Pecheur, RIACS / NASA Ames 1

Model Checking
for Autonomy Software

Charles Pecheur
RIACS / ASE Group, NASA Ames

©Charles Pecheur, RIACS / NASA Ames 2

Contents

Model Checking for Autonomy Software

• Why?
Autonomy software, how to verify it?

• What?
A bird's-eye view of model checking

• How?
Experiences in the ASE Group

©Charles Pecheur, RIACS / NASA Ames 3

Autonomous Systems

"Faster, better, cheaper" spacecrafts

=> add on-board intelligence

• From self-diagnosis
to on-board science.

• Smaller mission control crews
=> reduced cost

• Less reliance on control link
=> OK for deep space

©Charles Pecheur, RIACS / NASA Ames 4

Model-Based Autonomy

• Based on AI technology

• General reasoning engine +
application-specific model

• Use model to respond to
unanticipated situations

Reasoning
Engine

Model

commands status

Spacecraft

Autonomous controller

model of

©Charles Pecheur, RIACS / NASA Ames 5

Example: Remote Agent

• From Ames ARA Group (+ JPL)

• On Deep Space One in May 1999 (1st AI in space!)

Model Model

©Charles Pecheur, RIACS / NASA Ames 6

Controlled vs. Autonomous

Controller

“Valve 1 stuck” “Open valve 2”

Tester

Controller

Planner MIRExec

“Here we are”“Go to Saturn” Tester

?

©Charles Pecheur, RIACS / NASA Ames 7

Testing Autonomy Software?

• Programs are much more complex

• Many more scenarios

=> testing gives low coverage

• Concurrency!
Due to scheduling,
the same inputs (test) can give
different outputs (results)

=> test results are not reliable

A.read?0

A.write!1

B.read?1

B.write!2

B.read?0

B.write!1

A.write!1

0

0

01

1 1

12

A.read?x;
A.write !x+1;

B.read?y;
B.write !y+1;

0

©Charles Pecheur, RIACS / NASA Ames 8

Contents

Model Checking for Autonomy Software

• Why?
Autonomy software, how to verify it?

• What?
A bird's-eye view of model checking

• How?
Experiences in the ASE Group

©Charles Pecheur, RIACS / NASA Ames 9

Model Checking

Check whether a system S satisfies a property P
by exhaustive exploration of all executions of S

• Controls scheduling => better coverage

• Can be done at early stage => less costly

• Widely used in hardware, coming in software

• Examples: Spin (Bell Labs), Murphi (Stanford)

©Charles Pecheur, RIACS / NASA Ames 10

Model ...

Controller

Planner MIRExec

Modeling
Abstraction

Verification

©Charles Pecheur, RIACS / NASA Ames 11

Model Checking

Controller

Planner MIRExec

“Valve is closed when
Tank is empty”

AG (tank=empty
=> valve=closed)

Modeling
Abstraction

Verification

©Charles Pecheur, RIACS / NASA Ames 12

State Space Explosion

K processes with N local states ≤ NK global states

Theory:

Practice:

Controller

Planner MIRExec

“Valve is closed when
Tank is empty”

Model Checker
Run

Yes/No because ...

Controller

Planner MIRExec

“Valve is closed when
Tank is empty”

Model Checker
Run

No more
memory

©Charles Pecheur, RIACS / NASA Ames 13

Modeling

This is the tough job!

• Translation: to model checker's syntax
e.g. C —> Promela (Spin)

• Abstraction: ignore irrelevant parts
e.g. contents of messages

• Simplification: downsize relevant parts
e.g. number of processes, size of buffers

Controller

Planner MIRExec

“Valve is closed when
Tank is empty”

Model Checker
Run

Yes/No because ...
Translation
Abstraction

Simplification

©Charles Pecheur, RIACS / NASA Ames 14

Temporal Logic

• Propositional logic + quantifiers over executions

• Example: "every request gets a response"
AG (Req => AF Resp)

Always Globally, if Req then Always Finally Resp

• Branching (CTL) vs. linear (LTL)
– different verification techniques

– neither is more general than the other

• Model checking without TL
– Assertions, invariants

– Compare systems, observers

©Charles Pecheur, RIACS / NASA Ames 15

Symbolic Model Checking

• Manipulates sets of states,
Represented as boolean formulas,
Encoded as binary decision diagrams.

• Can handle larger state spaces (1050 and up).

• BDD computations:
– Good in average but exponential in worst case.

– Computation time depends on BDD size
=> number of variables, complexity of formulas,
but not directly state space size.

• Example: SMV (Carnegie Mellon U.)

x

y

0 1 2 ...
0

1
...

x=2 ∨ y=1

1 0

x=2

y=1

©Charles Pecheur, RIACS / NASA Ames 16

Real-Time and Hybrid

• "Classic" model checking: finite state, un-timed

• Real-time model checking: add clocks
e.g. Khronos (Verimag), Uppaal (Uppsala/Aalborg)

• Hybrid model checking: add derivatives
e.g. Hytech (Berkeley)

More complex problems & less mature tools

cl<5 cl≥4cl:=0

dx/dt=2 x≥4x:=0

©Charles Pecheur, RIACS / NASA Ames 17

Contents

Model Checking for Autonomy Software

• Why?
Autonomy software, how to verify it?

• What?
A bird's-eye view of model checking

• How?
Experiences in the ASE Group

©Charles Pecheur, RIACS / NASA Ames 18

Verification of
Remote Agent Executive

• Smart executive system with AI features (Lisp)

• Modeled (1.5 month) and
Model-checked with Spin (less than a week)

• 5 concurrency bugs found, that would have been
hard to find through traditional testing

(Lowry, Havelund and Penix)

©Charles Pecheur, RIACS / NASA Ames 19

Hunting the RAX Bug

• 18 May 1999: Remote Agent Experiment
suspended following a deadlock in RA EXEC
=> Q: could V&V have found it?

• Over-the-week-end "clean room" experiment:
– Front-end group selects suspect sections of the code

– Back-end group does modeling (in Java) and
verification (using Java Path Finder + Spin)

• => A: V&V found it... two years ago!
Same as one of the 5 concurrency bugs found before

• Morale: Testing not enough for concurrency bugs!

(Lowry, White, Havelund, Pecheur, ...)

©Charles Pecheur, RIACS / NASA Ames 20

Verification of
Model-Based Autonomy

Reasoning Engine
• Relatively small, generic

algorithm => use prover

• Requires V&V expert level
but once and for all

• At application level,
assume correctness
(cf. compiler)

Reasoning
Engine

Model

Autonomous Controller

Model
• Complex assembly of

interacting components
=> model checking

• Avoid V&V experts
=> automated translation
Not too hard because models
are abstract

Reasoning Engine + Model ???

©Charles Pecheur, RIACS / NASA Ames 21

Verification of
Planner/Scheduler Models

• Model-based planner from Remote Agent
Models: constraint style, real-time

• Small sample model translated by hand
Subset of the full modeling language, untimed

• Compare 3 model checkers: Spin, Murphi, SMV
=> SMV much easier and faster (≈0.05s vs. ≈30s)

• Continuation (Khatib): handle timed properties
using real-time model checker (Uppaal)

(Penix, Pecheur and Havelund)

©Charles Pecheur, RIACS / NASA Ames 22

MRMI

C
o

m
m

a
n

d

Discretized
Observations

Mode
updates

Goals
Model

Reconfig
Command

current state

Plan Execution System

High level operational plan

Livingstone

Courtesy Autonomous Systems Group, NASA Ames

 The Livingstone MIR

Remote Agent's model-based fault recovery sub-system

©Charles Pecheur, RIACS / NASA Ames 23

Livingstone to SMV
Translation

MODULE valve
VAR mode: {Open,Closed,

StuckO,StuckC};
cmd: {open,close};

DEFINE faults:={StuckO,StuckC};
TRANS
 (mode=Closed & cmd=open) ->
 (next(mode)=Open |
 next(mode) in faults)

ClosedClosed

ValveValve
OpenOpen StuckStuck

openopen

StuckStuck
closedclosed

openopen closeclose

Livingstone Model SMV Model
(defcomponent valve ()
 (:inputs (cmd :type valve-cmd))
 ...
 (Closed :type ok-mode
 :transitions
 ((do-open :when (open cmd)
 :next Open) ...))
 (StuckC :type :fault-mode ...)
 ...)

Livingstone
Autonomous
Controller

SMV
Symbolic

Model Checker

©Charles Pecheur, RIACS / NASA Ames 24

From Livingstone Models
to SMV Models

Translation program developed by CMU and Ames

• 4K lines of Lisp

• Similar nature => translation is easy

• Properties in temporal logic + pre-defined patterns

• Pilot Application:
ISPP autonomous controller (KSC)

• In progress:
– more property patterns

– translate results back to Livingstone

(Simmons, Pecheur)

©Charles Pecheur, RIACS / NASA Ames 25

Verification of
Model-Based Systems

• Model-based system = engine + model

• correct engine + correct plan ≠> good system !
e.g. can fail to properly recognize a fault

• Model check? Very hard!
Need (abstract) model of reasoning engine + model

=> complex, error-prone, huge state space

Reasoning
Engine

Model

Autonomous Controller

©Charles Pecheur, RIACS / NASA Ames 26

Analytic Testing

• Testing the real system => accuracy.

• Model-checking approach => exhaustive exploration.

• Restricted scenarios in simulator (otherwise too big).

• Completes, not supersedes, Model V&V (later stage).

status

Spacecraft
Simulator

commands

Engine Model

Autonomous Controller

Model
Checking
Engine

get state
set state

single step

©Charles Pecheur, RIACS / NASA Ames 27

 Generic Verification
Environment

• Principle: uncouple V&V subject from V&V algo.

• Common denominator of several projects in ASE.

• Hooks already present in Livingstone.

Test
Model
Check

©Charles Pecheur, RIACS / NASA Ames 28

Conclusions

Model checking:
• Autonomy needs it – testing is not enough

• General pros&cons apply:
– exhaustive... if model is small enough

– automatic verification... but tough modeling

• Works nicely on autonomy models

• Solutions inbetween testing and model checking

• Not short of tough problems:
– Real-time, hybrid, AI

– Learning/adaptive systems: after training/including training

©Charles Pecheur, RIACS / NASA Ames 29

(load "mpl2smv.lisp")
;; load the translator
;; Livingstone not needed!

(translate "ispp.lisp" "ispp.smv")
;; do the translation

(smv "ispp.smv")
;; call SMV
;; (as a sub-process)

MPL to SMV: Example

(defcomponent heater …)
(defmodule valve-mod …)
…
(defverify
 :structure (ispp)
 :specification (all (globally …)))

(defcomponent heater …)
(defmodule valve-mod …)
…
(defverify
 :structure (ispp)
 :specification (all (globally …)))

MODULE Mheater …
MODULE Mvalve-mod …
…
MODULE main
VAR Xispp:Mispp
SPEC AG …

MODULE Mheater …
MODULE Mvalve-mod …
…
MODULE main
VAR Xispp:Mispp
SPEC AG …

Specification AG … is false as shown …
State 1.1: …
State 1.2: …

Specification AG … is false as shown …
State 1.1: …
State 1.2: …

ispp.lisp

ispp.smv

SMV output

Lisp shell

